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Abstract

We establish a connection between exchangeability and maximum entropy distribu-
tions by studying the mixing measure in de Finetti’s theorem. The main technical tool
borrowed is the convex core of a measure, originally invented to study kl-projections
in information theory. Along the way, we recover a representation result for finite
exchangeable sequences and its relation in the infinite length limit to a standard proof
of de Finetti’s theorem. Our method can be applied for more general symmetric
structures, we discuss an abstract proof recipe. We apply the method for finite ex-
changeable graphs, using results from the theory of graph limits. Using the convex
core, we draw the analogous connection to maximal entropy distributions, which are
the exponential random graph distributions. We collect the many applications of the
method in one joint framework by studying the action of a direct limit of compact
groups on a compact metric space.

Keywords: finite exchangeability; maximum entropy distributions; kl-projections; de Finetti’s
theorem, ergodic decomposition

1 Introduction

Throughout, we fix a probability space (Ω,P). A random sequence Y = (Y1(ω), Y2(ω), . . . )
with values in a measurable space (S,S) is said to be exchangeable if its distribution LY is
invariant under finite permutations of its elements. The remarkable theorem of de Finetti,
see [Kal05] Theorem 11.10, characterises such distributions (as long as S as is a Polish
space) as mixtures of laws of independent and identically distributed sequences (i.i.d.).
That is, the random infinite sequence Y is exchangeable if and only if there exists a
probability measure µ on the space P(S) of probability measures on S such that

P(Y ∈ A) =
∫

P(S)

θn(A)µ(dθ), A ∈ Sn. (1)

In this case, µ is necessarily unique.
This result also has an important sampling perspective. To sample an instance from

the exchangeable law LY, we first need to sample a latent random measure Θ ∼ µ, and
then Y1:n|Θ from Θ∞, so Y is conditionally i.i.d. Then, using a law of large numbers
argument on the samples, we can recover de Finetti’s law of large numbers:

lim
n→∞

1

n

∑
i

δYi(ω)(·)
weakly−−−−→ Θ(ω) µ− almost surely. (2)
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Figure 1: The exchangeable simplex

Note in particular, that exchangeable laws L on S∞ and probability measures µ on P(S)
are in a one-to-one correspondence. We write Pµ for the exchangeable law corresponding
to the mixing measure µ. Also, by the de Finetti’s law of large numbers, we can recover,
at least in theory, the law of µ from empirical averages of samples from Pµ, according
to the two-step sampling procedure above. For a given n, there are numerous infinite
exchangeable sequences with the same n-dimensional marginal, so the law of (Y1, . . . Yn)
does not specify the mixing measure µ. That is, the mapping µ→ Pnµ where Pnµ stands for
the n-dimensional marginal of Pµ, is not injective. In particular, there is no hope to recover
µ from samples from this finite marginal only. One of the focuses of this work is this non-
recoverability phenomenon, i.e. to study the set Rn,+Y of possible mixing measures for the
marginal (Y1, . . . Yn). Our result, Theorem 6.1, which applies in the classical case when
the state space S is binary (or finite), says that it is in some sense as large as possible:
for any measure µ that satisfies some neccessary support conditions, there is a possible
mixing measure µ0 ∈ Rn,+Y that is a member of an exponential family with base measure
µ. To obtain this and related results, we utilise a connection with the theory of information
projections as outlined in [Csi75], [CM01], [CM03] and other works. Indeed, µ0 ∈ Rn,+Y for
a given µ will be taken as its kl−projection on Rn,+Y .

Such finite dimensional marginals of infinite exchangeable sequences are not the only
random finite sequences that are exchangeable. Indeed, there are finite exchangeable laws
that cannot be written as mixtures of product laws [Dia77]. We recall the intuitive ge-
ometric viewpoint of [Dia77] where exchangeable distributions over length-2 binary se-
quences are depicted in barycentric coordinates representing the probabilities of the se-
quences 00, 01, 10, 11 (Figure 1). The dark area, which is the convex hull of the curve of
all product laws, corresponds to the set of mixture sequences E2∞. Theorem 6.1 can be
intuitively understood in this geometric framework, which we will discuss at the end of
this section.

There are two main approaches in the literature to study finite exchangeability. In the
more traditional approach, e.g. [Dia77], [DF80], and further [GK21] the authors study the
set Enm(S) of finite exchangeable distributions on n variables that are initial segments of
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m-long exchangeable sequences. Such distributions are called m-extendible. They derive
approximations in terms of n and m on some notions of distance to the set En∞(S) of
infinitely extendible sequences, which is precisely the set of distributions in n variables
that are mixtures of i.i.d ones [KY18] (i.e. for which the non-recoverability problem above
applies). This approach then yields approximate equations of the form (1) for extendible
finite exchangeable distributions.

The other approach [Res85] [KS06] [JKY16], see also [KY18] provides an exact inte-
gral representation via a signed mixing measure, which is less interpretable [Dia23], but
still useful in statistical applications [BRW14], [KS06]. That is, for a finite exchangeable
sequence (X1, . . . Xn) with Xi ∈ S, there is a signed measure ν on P(S) such that

P(Y ∈ A) =
∫

P(S)

πn(A) ν(dπ), A ∈ Sn. (3)

There are many more random structures beyond sequences that are invariant under
permutations of some index set and exhibit a de Finetti-style representation. The theory
of Aldous, Hoover and Kallenberg (e.g. [Ald81], [Hoo79], [Kal89] and further [Kal05] and
references therein) of exchangeable arrays provides a general treatment of many of these.

The theory of graph limits (e.g. [LS06], [BCL+06], [BCL+08] and further [Lov12] and
references therein) gives a parallel perspective to the Aldous-Hoover-Kallenberg theory
[DJ08] [Aus08]. Based on this connection, several parallel exchangeability and limit the-
ories have been developed for other combinatorial objects [Jan11a], like bipartite graphs,
hypergraphs, posets, permuatations, trees etc, see [LS10], [Jan11b], [ES12], [HKM+13],
[Stu21], [ET22]. Most of these results are largely analogous, but a unified perspective
seems still to be missing [Jan11a].

Finite exchangeability seems to not have gained much attention in either perspectives
of the theory, with the exception of [BS98], [Mat95], [SBC00] and more recently [Sad20]
[Leo18] in the spirit of the first and second approaches respectively.

In the first part of the paper, Sections 2-5 we develop a functional analytic framework
where we can treat many of these exchangeable objects, both infinite and finite, together.
The framework includes the second approach to finite exchangeability via signed mixtures.
We first identify a proof recipe for integral representation results of the form (1) and (3)
in Section 2 by considering exchangeable binary sequences. In Section 3, we apply the
proof recipe for exchangeable graphs, using results from the theory of graph limits. We
deduce a signed measure representation for graphs, Theorem 3.8, analogous to (3). In
Section 4 we show some further applications of the proof recipe to deduce de Finetti
theorems for other infinite exchangeable objects and the corresponding signed measure
representation for their finite counterpart. Then in Section 5 we treat these structures
jointly by studying the more abstract setup of the action of a direct limit G of compact
groups on a compact metric space Z, and G-invariant distributions on Z. An abstract
integral representation is immediately available from the ergodic decomposition theorem,
which writes G-invariant distributions as mixtures of ergodic ones. The de Finetti integral
representations satisfy further important properties, like the weak compactness of the set
of ergodic distributions, or the laws of large numbers. We identify structural properties
of the action that imply these properties and hold for the actions of the symmetric group
corresponding to the various exchangeability notions discussed.

In the second part, starting with Section 6, we discuss the non-recoverability of in-
finitely extendible sequences via the connection to information projections. Section 6 is
mostly self-contained, the framework of the first part motivates the connection and gives
a way to deduce similar results for exchangeable graphs and more. Tha graph case is
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discussed in Section 7, where the exponential family mixture densities take the form of
exponential random graph distributions [CD13].

In the rest of this section, we discuss in more detail the geometric intepretation of finite
exchangeability following [Dia77] and [KS06]. This provides useful intuition throughout
and especially in the second part.

1.1 Geometry of finite exchangeable binary sequences

Consider the space P2
n of probability distributions on n-long binary sequences. This can be

represented by the 2n−1 dimensional simplex ∆2n embedded in 2n-dimensional Euclidean
space The coordinate vector p = (p0, p1, ...p2n−1) corresponds to the distribution Dp where
pj is the probability under Dp of the n-long sequence given by the binary representation
of j. That is, if Z = (Z1, . . . Zn) ∼ Dp and j = a1 · 20 + a12

1 + . . . an2
n−1, then

pj = P(Z1 = a1, . . . Zn = an).

Let E2n ⊂ P2
n be the convex subset of exchangeable distributions. For 0 ≤ k ≤ n,

let Ωkn be the set of sequences with k many coordinates taking value 1. By definition, a
distribution is exchangeable, if and only if it assigns the same mass to each element of Ωkn.
It is then observed in [KS06] that the uniform distributions hk on Ωkn (the so-called urn
distributions) are the extreme points of Ekn and are linearly independent. It then follows
that E2n is also a simplex, of dimension n.

In the case n = 2, the simplex P2
2 is a tetrahedron and E22 is a triangle inside it, see

Figure 2. Here e.g. the coordinate vector (0, 0, 0, 1) stands for the distribution that assigns
mass 1 to the sequence (1, 1), whilst (0, 12 ,

1
2 , 0) stands for the one that assign equal mass

of 1
2 to the sequences (0, 1) and (1, 0).

(1, 0, 0, 0) (0, 0, 0, 1)

(0, 0, 1, 0)

(0, 1, 0, 0)

(0,
1

2
,
1

2
, 0)

(q00, q01, q10, q11)

Exchangeable if
p01 = p10

q

Figure 2: Simplex of distributions on sequences

Since each sequence in Ωkn receives the same mass under exchangeable distributions,
it is convenient to project the coordinates corresponding to these sequences to a single
coordinate and thus embed the exchangeable simplex directly in Rn+1. In the n = 2 case
this corresponds to the projection (q00, q01, q10, q11) → (q00, q01, q11). This convention is
followed from now on.

In the exchangeable simplex, the i.i.d. laws can be parametrised by the function

cn : [0, 1]→ E2n ⊂ Rn+1

cn(θ) = (θn, θn−1(1− θ), . . . , (1− θ)n),
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(0, 1/4, 1/2)
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(0, 1/3, 1/3)

(1/2, 1/4, 0)

4-extendible

Figure 3: Extendible finite exchangeable distributions

which we call the i.i.d. curve. For n = 2 this is the parabola in Figure 1 and 2 above.
For an finite exchangeable sequence X, we write pX for the corresponding vector of

coordinates in the exchangeable simples and call it the law vector of X. Note then that for
a finite exchangeable sequence with coordinate vector pX, equation(3) can be summarised
for the binary case in this parametrisation by the equation

pX =

∫
[0,1]

cn(θ) ν(dθ), (4)

where ν is a signed measure on [0, 1]. If X is infinitely extendible, de Finetti’s theorem
yields the same equation pX =

∫
[0,1] c

n(θ)µ(dθ) with a (positive) probability measure µ.
Such integrals against a probability measures are generalised convex combinations in the
sense that we have pX ∈ conv(cn([0, 1])), where conv stands for the closed convex hull of
a set. Note however, that cn([0, 1]) is a compact subset of Rn+1 and so its convex hull is
again compact. So it suffices to write conv(cn([0, 1]). We write Cn for this area, which is the
dark area under the i.i.d. curve in Figure 1 and 2 in the case n = 2. The results of [Dia77],
[DF80], [KY18], [GK21] and many more is that the set of m-extendible exchangeable
distributions approach the i.i.d. curve in various state spaces S and disctance notions, like
total variation [DF80] or the kl-divergence [GK21]. In the exchangeable triangle (which
again corresponds to exchangeable distributions on length-2 binary sequences), the sets of
3- and 4-extendible distributions are depicted in Figure 3, see [Dia77] for further discussion.

We now turn to stating our result Theorem 6.1 in this context. For a measure ν on
[0, 1], we write sµ for its support and int(A) for the interior of a Borel set A. Note again
that the value of

∫
[0,1] c

n(θ)µ(dθ) lies in the convex set Cnµ = conv(cn(sµ)) ⊂ Cn. Figure 4
illustrates this set in the case where µ is supported on two disjoint intervals.

It is then apparent that pX ∈ Cnµ is obviously neccessary for µ to satisfy (4) and thus
be a possible mixing measure for X. The content of Theorem 6.1 is that this is in a
sense enough, up to an exponential family with base measure ν. We write Eµ,f for the
exponential family with base measure µ and sufficient statistic f , i.e.

Eµ,f =
{
Qθ :

dQθ
dµ

(x) = e⟨θ,f(x)⟩−Λf (θ), θ ∈ dom(Λf )
}
, (5)

where Λf (θ) =
∫
X e

⟨θ,f(x)⟩dµ and dom(Λf ) = {θ : Λf (θ) <∞} .

Theorem. Let X be a finite exchangeable distribution and µ be a measure on [0, 1] with
infinite support. Then int(Cn) is not empty and there is a µ0 ∈ Eν,cn that is a possible
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mixing measure for X if and only if

pX ∈ int(Cnµ). (6)

This result is thus almost optimal in the sense that provided µ satisfies the strictly
neccessary support condition pX ∈ Cnµ , strengthened by taking the interior, there is an
element in its exponential family that is a possible mixing measure for X. So in this sense,
the set of possible mixing measures is ’as large as possible’.

(1, 0, 0, 0) (0, 0, 0, 1)

(0,
1

2
,
1

2
, 0)

sµ = [0.2, 0.5] ∪ [0.8, 0.9]

c2(sµ)

conv(c2(sµ))

p = (p00, p01, p10, p11)

p

Figure 4: Theorem 6.1 support condition

All of the statements in this subsection have straightforward equivalents for sequences
with values in a finite state space S, but a more cumbersome notation is needed [KS06].
The intuition also carries over to more general S as well, but the infinite dimensional nature
of the simplices result in some technical difficulties. In particular, Theorem 6.1 does not
cover this case as we crucially need that the function cn has finite number of components.

2 Binary sequences

In this section, we develop our method for proving the representation result of [KS06]
for finite exchangeable sequences. We start with binary sequences and identify the key
patterns of the proof that we adapt to other settings in the next sections. We first racall
some standard results and definitions in the form we will refer to them.

Definition 2.1. The total variation norm of a signed measure λ on the measureable space
(S,S) is defined by

∥λ∥TV = λ+(S) + λ−(S), (7)

where λ has the Jordan decomposition λ = λ+ − λ−.

Theorem (Riesz Representation theorem). Let C(K) be the vector space of real valued
continuous functions on the compact Hausdorff topological space K. Then for each linear
functional ϕ ∈ C(K)∗, there is a unique signed measure λ on (K,B(K)) such that∫

K
f(x)λ(dx) = ϕ(f)
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for each f ∈ C(K). Moreover,
∥ϕ∥∗ = ∥λ∥TV .

Thus, the space (M(S), ∥ · ∥TV ) of signed measures on S in the total variation norm and
(C(K)∗, ∥ · ∥∗) are isometrically isomorphic.

Theorem (Hahn-Banach Theorem). Let X be a real normed vector space and Y ≤ X a
subspace. If ϕ ∈ Y ∗ is a linear functional on Y , there is φ ∈ X∗ with ∥φ∥∗ = ∥ϕ∥∗ such
that

φ|Y = ϕ.

Theorem (Stone-Weierstrass Theorem). Let K be a compact Hausdorff space and A be
the subalgebra of C(K) that contains a non-zero constant function. Then A is dense if
and only if it seperates the points of K.

2.1 Exchangeable binary sequences

Let Y = (Y1, Y2, . . . ) be an infinite exchangeable binary sequence. Let

pmk = P(Y1 = 0, . . . Yk = 0, Yk+1 = 1 . . . Ym = 1). (8)

We call (pmk )m∈N,k≤m the law sequence of Y and (pmk )k≤m its m-th level. Note that a
law-sequence uniquely specifies a binary exchangeable distribution.

The parametrisation of a Bernoulli random variable Z by P (Z = 0) = θ with θ ∈ [0, 1]
leads to a natural parametrisation of mixtures of iid sequences by integrals on [0, 1] in the
usual Borel σ-algebra. In this parametrisation de Finetti’s theorem translates to

Fact 2.2 (de Finetti). An infinite binary sequence Y is exchangeable, if and only if there
exists a unique probability measure µ on [0, 1], such that for all m ∈ N and k ≤ m,

pmk =

1∫
0

θk(1− θ)(m−k)µ(dθ). (9)

In this case, Y1+...Ym
m → Θ almost surely, where the random Θ ∈ [0, 1] has law µ.

If X = (X1, . . . Xn) is a finite exchangeable sequence, we can define its law-sequence
(pmk )k≤m≤n similarly, up to levels m ≤ n, which again characterises the distribution of X.
In the above parametrisation, the signed measure representation result, Theorem 3 then
translates to the following, noted in this form in [Jay86].

Fact 2.3 (Ressel). A random finite binary sequence (X1, . . . Xn) is exchangeable, if and
only if there exists a signed measure ν on [0, 1], such that for k ≤ m ≤ n,

pmk =

∫ 1

0
θk(1− θ)m−kν(dθ). (10)

We give a functional analytic perspective to this result which leads to a straightforward
characterisation of the set of all possible signed measures for a given X, which seems to
have not been noted before, c.f. [Leo18].

Proof. Consider for k ≤ m ≤ n the integrands

cmk (θ) := θk(1− θ)m−k. (11)
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These are polynomial functions on the compact parameter space [0, 1] and thus continuous.
The scaled versions bmk (θ) :=

(
m
k

)
θk(1− θ)m−k are the well-known Bernstein polynomials.

For a fixed m, they are known to be a basis for the vector space Pm of polynomials of degree
at most m. It then follows that the same is true for (cmk (θ))k≤m. Fix a finite exchangeable
X with law sequence (pmk )k≤m≤n. Let’s define the linear functional TX on Pm by

TX(c
m
k (θ)) = pmk (12)

on the basis and then extend it linearly. By the Hahn-Banach theorem, this can be extended
to a T ′

X defined on the space of all continuous functions C([0, 1]) on [0, 1] that has the same
dual space norm ∥T ′

X∥∗ = ∥TX∥∗. By the Riesz representation theorem, there is a unique
signed measure ν on [0, 1] with ∫

f(θ)ν(dθ) = T ′
X(f)

for each f ∈ C([0, 1]) and ∥ν∥TV = ∥T ′
X∥∗. This ν then satisfies (10).

Note also, again by the Riesz representation theorem, the set RX of all possible
such signed measures for X is isometrically isomorphic to the set of linear functionals
λ : C([0, 1])→ R with λ(cmk (θ)) = pmk . This is an affine subspace of C([0, 1])∗ of codimen-
sion n+ 1. We thus conclude the following.

Proposition 2.4. The set RX of signed measures satisfying (10) is an affine set, with
codimension n+ 1 in the space of all signed measures on [0, 1].

Since polynomials are dense in C([0, 1]) and the cmk (θ) span all other polynomials, it
follows that for an infinite exchangeable Y as above, there is at most one such T that
satisfies all the constraints in (9). Then it is neccessarily a positive linear map, again
by density since it maps all of cmk (θ) to positive values. De Finetti’s theorem then says
that such a T exists and then the corresponding positive measure µ on [0, 1] via the Riesz
theorem is the unique mixing measure. We briefly sketch a proof based on the method of
moments, following [Fel71], p.228.

Proof of De Finetti’s Theorem, sketch. For an infinite exchangeable sequence Y with law
sequence (pmk )k≤m, consider, for each m ∈ N the probability measure

µm =

m∑
k=1

(
m

k

)
pmk δ k

n
.

Straightforward calculations, spelt out in [Fel71] show that µm(cnk) → pmk as m → ∞ for
each k, n ∈ N with k ≤ n. Now the set P([0, 1]) of probability measures is weakly compact,
so there is a subsequence mi such that µmi ⇀ µ for some probability measure µ. Since
µmi(c

n
k)→ µ(cnk). Hence µ(cnk) = pnk for each k ≤ n and µ satisfies (9). Uniqueness follows

from the above considerations.
For the law of large numbers result, note that µm(f) = EY(f

(
Y1+···+Ym

m )
)

for any
measurable function f on [0, 1]. The random sequence (Mm)m∈N with Mm = Y1+···+Ym

m is
well-known to form a reverse martingale, see Section 5 in this text and e.g. [Kin78]. It
follows from the reverse martingale convergence theorem, that there is a random element
Θ ∈ [0, 1] such that Mn → Θ almost surely. Then, for a continuous g, it follows that
g(Mn) → g(Θ) almost surely. Since any g ∈ C([0, 1]) is also bounded, we also have that
µm(g) = EY(g(Mm))→ EΘ(g(Θ)). It thus follows that Θ has law µ.
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Remark 2.5. Let’s write Bm,f (θ) =
∑m

k=1 f(
k
m)
(
n
k

)
θk(1 − θ)m−k for the mth Bernstein

approximating polynomial of the continuous function f. Then observe [Fel71] that the
probability measures µn and µ are linked by µ(Bm,f ) = µm(f). This relates the rate of
convergence of µm to that of the Bernstein approximating polynomials via

|µ(f)− µm(f)| = |µ(f)− µ(Bm,f )| ≤∥f −Bm,f∥, (13)

which is optimal for a general µ. The convergence of the Bernstein approximating polyno-
mials depend on the modulus of continuity of f and have been extensively studied, [BC89].
Under some regularity assumptions on µ, stronger results have been recently proven in
terms of various metrizations of weak convergence, see [Dö15], [MPS16] and [DF20].

Above, we used 5 key properties of the parametrisation of the i.i.d. Bernoulli variables
by θ ∈ [0, 1]. We identify these and how they should be adapted to to obtain similar results
for other symmetric random structures.

1. The parameter space [0, 1] is compact and Hausdorff. Generally, we need to take
parameters for the ergodic distributions from a compact Hausdorff space K to apply
the Riesz representation theorem.

2. The functions cni are continuous. In the general case, we need to identify the sufficient
statistic for the symmetry notion as a function of the parameters and we need to prove
that they are continuous for Riesz’s representation theorem to apply.

3. We also needed that these functions are linearly independent as vectors in C(K) to
obtain the signed measure representation.

4. We needed that they are dense in K. This last one was used to obtain the represen-
tation theorem in the limit m→∞.

5. Finally, we used that the averages Y1+···+Ym
m have a reverse martingale structure to

conclude the law of large numbers result.

In the next section we show how this proof recipe can be used for exchangeable graphs.

3 Integral representation of exchangeable graphs

Throughout, by a finite simple graph we mean a graph G = (VG, EG) with vertex set
VG = [n] = {1, . . . , n} for some n and an edge set EG without loops and multiple edges.
We write Ln for the set of simple graphs on n vertices and L = ∪nLn. A random graph
F ∈ Ln is finitely exchangeable, if its distribution is invariant under permutations of the
vertex set. That is, for G1, G2 ∈ Ln that are isomorphic,

P (F = G1) = P (F = G2). (14)

Following [DJ08], we write Un for the set of unlabelled graphs on n vertices, i.e. the set of
such graphs with isomorphic graphs identified and U = ∪n Un An infinite graph H is defined
similarly, with vertex set N. A random infinite graph is exchangeable if the restriction H|n
to the vertex set [n] is exchangeable for each n ∈ N.

Definition 3.1. A random two-array (Xij)i,j∈N is jointly exchangeable if

(Xij)
d
= (Xσ(i)σ(j)) (15)

for every permutation σ ∈ S.
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The the special case of interest here is when (Xij) is a random symmetric binary array,
but with 0-s on the diagonal. In this case, the array (Xij) form a random adjacency matrix
of an infinite random graph. Joint exchangeability means in that case that the distribution
of the graph is exchangeable. The following is a special case of a theorem of Aldous and
Hoover, see [Ald81], [Hoo79], [Kal05] and [Aus12] for this special case.

Fact 3.2 (Aldous-Hoover). Let (Xij)i,j∈N be a symmetric binary, jointly exchangeable
array with 0-s on the diagonal. Then there exists a measurable f : [0, 1]× [0, 1]2 × [0, 1]→
{0, 1}, symmetric in the last two coordinates, such that

(Xij)
d
= f(U,Ui, Uj , U{i,j}). (16)

In this section, we prove a signed measure representation for finitely exchangeable
graphs, similar to Fact 2.3 and also an integral representation version of Fact 3.2 with
a law of large numbers, using our proof recipe from Section 2. The aim is to make the
analogy with the sequence case fully explicit via our proof recipe. To begin with, we state
De Finetti’s theorem in an analogous version following [Aus12].

Fact 3.3. Suppose (Xi) is an infinite exchangeable binary sequence. Then there is a
measurable function T : [0, 1]× [0, 1]→ {0, 1}, such that

(Xi)
d
= (T (U,Ui)) (17)

where (Ui) and U are independent U([0, 1]) random variables.

We show how we can recover the usual form of de Finetti’s theorem from this form.
Let Yi = T (U,Ui). Then, following the law-sequence notation for exchangeable sequences,
we have

pnk = P (Y1 = Y2 = . . . Yk = 1, Yk+1 = 0, . . . Yn = 0)

=

∫ (∫
[0,1]n

k∏
i=1

T (u, ui)
n∏

i=k+1

(1− T (u, ui)) du1 . . . dun

)
du.

Writing θ(u) =
∫
[0,1] T (u, ui)dui, which is a measurable function [0, 1]→ [0, 1], we obtain

pnk =

∫
(cnk ◦ θ)(u)du.

Taking image measures under p, we recover usual integral form (9).
We now adapt this argument to graphs. Take an infinite exchangeable random graph

H. For such, the analogous statistic to the n-th level law-sequence for binary sequences is
the distribution of H|n, i.e. the set {pG := P (H|[n] = G) : G ∈ Ln}. For f as in Theorem
3.2, we write

w(u, ui, uj) =

∫ 1

0
f(u, ui, uj , u{i,j})du{i,j} (18)

Then, from (16) using (18), we have that

P (H|[n] ∼= G) =

∫
[0,1]

θG(u)du, where (19)

θG(u) =

∫
[0,1]VG

 ∏
{i,j}∈EG

w(u, ui, uj)
∏

{i,j}̸∈EG

(1− w(u, ui, uj))

 du1 . . . dun. (20)
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Because nodes of the graph with a shared edge are coupled, θG(u) cannot be separated
in a form like cnk ◦ p(u) in the case of sequences and we cannot resort to a simple image
measure argument as above.

The usual solution is to view w(u, ui, uj) as a parametric function in W, the set of
symmetric measurable functions W : [0, 1]2 → [0, 1], with parameter u. The set W, called
the graphon space, is extensively studied in the graph limits literature, see [Lov12] for a
comprehensive treatment. We use properties of the graphon space to derive a complete
analogue of the integral representation (9) of de Finetti’s theorem, via a reparametrisation
of (20) in the form

P (H|[n] ∼= G) =

∫
W
fG(W )µ(dW ), where (21)

fG(W ) =

∫
[0,1]V

 ∏
{i,j}∈E

W (ui, uj)
∏

{i,j}̸∈E

(1−W (ui, uj))

 du1 . . . dun, (22)

with a suitable notion of integrals of graphons that we specify shortly. Here we recover

tind(G,W ) = fG(W ), (23)

the induced homomorphism density of G in W ([Lov12], (7.4)). These functions are the
direct analogues of the polynomials cnk in the graph setting. For reasons that we make
clear soon, it is more convenient to work with the homomorphism densities

t(F,W ) =

∫
[0,1]V

 ∏
{i,j}∈E

W (ui, uj)

 du1 . . . dun. (24)

They are seen ((7.4) and (7.5) in [Lov12]) to be related by the formula

t(F,W ) =
∑
F⊆F ′

F ′∈Un

tind(F
′,W ), (25)

and its usual Möbius inverse

tind(F,W ) =
∑
F⊆F ′

F ′∈Un

(−1)e(F ′)−e(F )t(F ′,W ). (26)

For the homomorphism densities, the corresponding law sequence statistic that specifies
exchangeable graph distributions is

{p′G := P(G ⊂ H) : G ∈ Ln},

where the relation ⊂ denotes inclusion as subgraphs, that is, EG ⊂ EH. In this statistic,
the desired integral representation becomes

p′G = P(G ⊂ H) =

∫
W
t(G,W )µ(dW ). (27)

In the theory of graph limits, graphons are the limiting objects of dense graphs in the
large vertex set limit. The functions t(F, ·) and tind(F, ·) are originally defined on finite
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graphs. For graphs F and G, the value of t(F,G) is the proportion of maps VF → VG that
are graph homomorphisms, i.e.

t(F,G) =
hom(F,G)

nk
, (28)

where n = |VG| and k = |VF |. If k ≤ n, we can similarly define tinj(F,G) as the proportion
of injective maps VF → VG that are homomorphisms, and tind(F,G) as the proportion
of those injective maps that also preserve non-adjacency, see [Lov12]. Then t(F, ·) and
tind(F, ·) have the above defined extensions to graphons. For tinj(F, ·), we recall from e.g.
[LS06] that

|tinj(F,G)− t(F,G)| ≤
|VF |
2|VG|

. (29)

In particular, in the limit |VG| → ∞, the functions tinj(F, ·) and t(F, ·) coincide and they
have the same extensions to graphons.

In the graphon space, a graph G on the vertex set [n] can be represented by a symmetric
stepfunctions WG such that WG(x, y) = Iij∈E(G) for x ∈ [ in ,

i+1
n ) × [ jn ,

j+1
n ). It can then

be checked ([Lov12] 7.2) that
t(F,G) = t(F,WG). (30)

The main reason that the functions t(F, ·) are more convenient than tind(F, ·), is that
tind(F,G) may not be equal to tind(F,WG) and so we cannot represent finite graphs by
graphons suitably under tind(F, ·).

We now specify the right σ-algebra on W for the integrals in (21) or (27).

Definition 3.4 ([Lov12], Definition 8.13). The cut norm on W is given by

∥W∥□ = sup
S,T⊂[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y)dx dy

∣∣∣∣∣∣ , (31)

where the supremum is taken over all measurable subsets S and T.

Definition 3.5 ([Lov12], Definition 8.17). Let Ψ denote the set of invertible measure
preserving maps [0, 1]→ [0, 1]. The cut distance of two graphons is given by

δ□(U,W ) = inf
ϕ∈Ψ
∥U −W ϕ∥□ (32)

where W ϕ(x, y) =W (ϕ(x), ϕ(y)).

A sequence of finite simple graphs is said to converge, if (WGn) converges in W in
the cut distance. This is the sense in which graphons are limiting objects of finite simple
graphs. One of the main motivations for the cut distance from our perspective is the
following result from [BCL+08] see also [DJ08], and [Lov12] Corollary 10.34.

Fact 3.6 (Borgs, Chayes, Lovász, T. Sós, Vesztergombi). We have δ□(U,W ) = 0 if and
only if t(G,W ) = t(G,U) for every finite graph G.

Note in the integral (27) we only access W ∈ W via the functions t(G, ·). So for
uniqueness statements, we need to identify W -s for which those functions coincide. Fact
3.6 grants us that this can be done by working in the quotient space W, where W and
U with δ□(W,U) = 0 are identified. From now on, we abuse notation and by a graphon
W we mean its equivalence class in W. It can be seen that δ□ is a metric on W and we
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interpret (21) and (27) in the Borel σ-algebra or this metric structure on W. The precise
statements that we prove then are the following. The first is implicit in e.g. [DJ08] and
[OS16], but we believe it has only been stated in this form in [OR15]. The second we
believe to be new.

Fact 3.7 (de Finetti’s theorem for exchangeable graphs). A random infinite graph H is
exchangeable, if and only if there is a Borel probability measure on W, such that

P (G ⊂ H|[n]) =
∫
W
t(G,W )µ(dW ) (33)

holds for each finite simple graph G. In this case, the measure µ is unique and WH|n
converges almost surely in δ□ to a random element W with law µ.

Theorem 3.8 (Integral representation of finite exchangeable graphs). Let F be a finitely
exchangeable random graph on the vertex set [n]. Then there exists a Borel signed measure
ν on W such that for each G ∈ Ln,

P (G ⊂ F) =
∫
W
t(G,W ) ν(dW ). (34)

Moreover, the set RF of signed measures that satisfy (34) is an affine subspace of the
dual space C(W)∗ of codimension m, where m = |Un| is the number of graphs on n vertices
up to isomorphism.

To prove these statements, we quote results from graph limits theory to see that the
requirements on our proof recipe are satisfied with the parameter spaceW and the functions
{t(G, ·) : G ∈ L}. First of all, if G1 and G2 are isomorphic, we have t(G1,W ) = t(G2,W )
for anyW , since the definition of t(G,W ) depends only on the edge structure. In particular,
any infinite random graph H that satisfies (33) is exchangeable. From now on, we will
identify these functions for isomorphic Gi and thus index them by unlabelled graphs.

Compactness As shown in [LS07], Szemerédi’s Regularity Lemma [Sze75] can be phrased
as the compactness result we need (see also as Theorem 9.23 in [Lov12]).

Fact 3.9 (Lovász, Szegedy). The metric space (W, δ□) is compact.

Continuity Continuity of the functions t(G, ·) follows directly from the Counting Lemma
of [LS06], also as Lemma 10.23 in [Lov12].

Fact 3.10 (Lovász, Szegedy). Let F be a simple graph and let W,U ∈ W. Then

|t(F,W )− t(F,U)| ≤ e(F )δ□(W,W ′). (35)

So the functions t(F, ·), are actually Lipschitz.

Linear independence The following was proven in [DGKR15], where the authors study
the differential theory of functions in C(W ). We provide a proof without the differential
machinery developed there.

Fact 3.11. The set {t(G, ·) : G ∈ Un} is linearly independent as vectors in C(W) for any
n.

We deduce this from the linear independence result in [ELS79] (Proposition 5.44 (c) in
[Lov12]) for the classical homomorphism densities in graphs rather than in graphons.
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Fact 3.12 (Erdős, Lovász, Spencer). Let F1, . . . Fk be nonisomorphic simple graphs with no
isolated nodes. Then there are simple graphs G1, . . . Gk such that the matrix [t(Fi, Gj)]

k
i,j=1

is nonsingular.

Proof of Fact 3.11. For Fi ∈ Un, let F ′
i ∈ ∪nk=0 Uk be the graph with all the isolated

nodes removed from Fi. Note t(Fi,W ) = t(F ′
i ,W ) for any graphon W. It then follows from

Proposition 3.12 that there are simple graphsG1, . . . Gm so that the functions t(Fi, ·) : W →
[0, 1], when restricted to (the δ□ equivalence classes of) the graphons WG1 , . . .WGm are
linearly independent. It then follows that t(Fi, ·) are certainly linearly independent on the
whole domain W.

At this point, we can already conclude Theorem 3.8.

Proof of Theorem 3.8. As for sequences, we can define a linear map T on span({t(G, ·) :
G ∈ Un}) with T (t(G, ·)) = p′G noting the functions {t(G, ·) : G ∈ Un} are linearly inde-
pendent. Since they are also continuous, we then extend to a bounded linear map on C(W)
by the Hahn-Banach theorem. We then conclude by the Riesz representation theorem.

Density The following was also observed in [DGKR15]. We provide the proof for its
importance in the next section.

Fact 3.13 (Diao, Guillot, Khare, Rajanatnam). The set Ahom = span({t(G, ·) : G ∈ U})
is dense in C(W).

Proof. We use the Stone-Weierstrass theorem. For this, we need to show that Ahom is an
algebra that separates points in W and contains a nonzero constant function. Note that
for graph G0 with no edges, t(G0, ·) is the constant 1 function. For the algebra structure
of Ahom, we can directly check from the definition (24) of t(G, ·) that

t(F1F2,W ) = t(F1,W )t(F2,W ), (36)

where for the finite simple graphs F1 and F2, the graph F1F2 is their disjoint union. See
also [Lov12], (7.6). It follows that for fi, fj ∈ Ahom also fi · fj ∈ Ahom as well and Ahom is
an algebra.

Finally, we need to show that Ahom separates the points inW. This was the motivation
for taking the quotient with respect to δ□ and indeed, this is the restatement of Theorem
3.6.

It thus follows that for an infinitely exchangeable graph H, there is at most one measure
µ ∈ C(W)∗ that satisfies (33) for all G ∈ U . Moreover, such a µ is a probability measure.

Martingale Structure For both the existence and the law of large numbers result, we
will use the following, pointed out in [DJ08] and [Lov12] Proposition 11.14. See Section
5 in this text for a proof and a general perspective.

Fact 3.14. For an infinite exchangeable random graph H, and a graph F with m vertices,
the sequence (tinj(F,H|n))m≤n forms a reverse martingale.

We are now ready for the proof of Fact 3.7

14



Proof. We have seen that any infinite random graph satisfying (33) must be exchangeable.
The density result Fact 3.13 shows that such a µ, if exists, is neccessarily unique.

For the existence, take an infinite exchangeable graph H with pG = P(G = H|n) and
p′G = P(G ⊂ H) for a finite simple graph G. Consider the measure µn on W given by

µn =
∑
G∈Ln

pGδWG
. (37)

We will show that µn(t(F, ·)) → p′F and then conclude, by a similar method of moments
argument to the sequence case by passing to a subsequence, noting that P(W) is weakly
compact, since W is compact.

Fix a finite simple graph F , since tinj(F,H|n) is a reverse martingale, there is a ran-
dom ZF ∈ [0, 1] such that tinj(F,H|n) → ZF almost surely. By the approximation (29),
neccessarily tinj(F,H|n) − t(F,H|n) → 0 almost surely and so t(F,H|n) → ZF too almost
surely. Since the functions tinj(F, · and t(F, ·) are bounded, all of these hold in expecta-
tion as well. Note that µn(f) = EH(f(WH|n)) for any integrable function f on W. Using
t(F,G) = t(F,WG) for any finite simple graph G, it follows that

µn(t(F, ·)) = EH(t(F,H|n))→ E(ZF ).

Via the treatment in Section 5, it will be immediately clear that E(ZF ) = P(F ⊂ H) = p′F ,
but we rephrase here for completeness. By the martingale structure, EH(tinj(F,H|n)) =
EH(tinj(F,H|k)) for n, k ≥ m = |VF | and so E(ZF ) = E(tinj(F,H|m)). Now an injective
map [m]→ [m] is a permutation. Thus, since H is exchangeable,

EH(tinj(F,H|m)) = EH

(
1

|Sm|
∑
σ∈Sm

I(F ⊂ (σ ·H|m))

)
= EH (I(F ⊂ (H|m))) = P(F ⊂ H)

where we denote by σ ·H|n the graph obtained by permuting the vertices by σ.
Finally, for the law of large numbers, we have already noted that t(F,WH|n) converges

almost surely for a finite simple graph F . Since there are countably many such F , this
holds jointly for all finite simple graphs. It follows that (WHn)n is almost surely Cauchy:
for otherwise, there would exist a continuous function f such that f(WHn) is not convergent
with nonzero probability. But by the density result Fact 3.13, on the probability 1 event
that all the t(F, ·), F ∈ L, all such functions are convergent.

Since W is complete, this sequence has an almost sure random limit W ∈ W. It also
follows from above that p′F = EW (t(F,W )) and so W has law µ.

In the proof, we have implicitly deduced the following key result of [BCL+06], [BCL+08],
also Theorem 11.5 in [Lov12], which characterises convergence in the graphon space, using
the continuity and density of the homomorphism densities.

Fact 3.15 (Borgs, Chayes, Lovász, T.Sós, Vesztergombi). LetWn be a sequence of graphons
in W and let W ∈ W. Then t(F,Wn) converges for all finite simple graphs F if and only
if Wn is a Cauchy sequence in the δ□ distance. Furthermore, t(F,Wn) → t(F,W ) for all
finite simple graphs F if and only if δ□(Wn,W )→ 0.

The classical proof of this fact, is stronger, inasmuch it relates the convergence rate
of the homomorphism densities to that of graphons via the so called Inverse Counting
Lemma (Lemma 10.32 in [Lov12]). In turn, those ideas lead to a more quantitative proof
of the density result Fact 3.13, by analogous approximating functions to the Bernstein
approximating polynomials. Just like in Remark 2.5, their convergence rate is closely
tied to that of the empirical measures µn.
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Theorem 3.16. For a continuous function f : W → R, the sequence of functions Bn,f ∈
Ahom given by

Bn,f (W ) =
∑
F∈Ln

f(WF )tind(F,W ) (38)

converges in C(W). Moreover an infinite exchangeable distribution, the mixing measure µ
and empirical measure µn =

∑
G∈Ln

pGδWG
are related by

µn(f) = µ(Bn,f ) (39)

for each f ∈ C(W) and in particular, |µ(f)− µn(f)| ≤ ∥f −Bn,f∥.

For the proof, we will use the Second Sampling Lemma from [BCL+08] ([Lov12] Lemma
10.16). It follows from Fact 3.7 that each W0 ∈ W corresponds to an infinite exchangeable
graph distribution, that has the mixing measure δW0 in (33). These distributions are
the ergodic exchangeable graph distributions [DJ08] and are studied in detail in [Lov12],
where they are called W -random distributions. We write G(k,W0) for the subgraph on [k]
generated from this distribution for a given W0 ∈ W. With this notation, the lemma says
the following.

Fact 3.17 (Borgs, Chayes, Lovász, T.Sós, Vesztergombi). For W0 ∈ W, and n ≥ 1, with
probability at least 1− exp(−k/(2 log(k)), we have

δ□(WG(n,W0),W0) ≤
22√
log(n)

Proof of Theorem 3.16. Take an infinite exchangeable graph H with mixing measure µ in
(33). Then we have that

pG = P(H|n = G) = µ(tind(G, ·))

for G ∈ L. It immediately follows that µn defined above satisfies µn(f) = µ(Bn,f ) for
each f : W → R measurable. Observe that P(G(k,W0) = F ) = tind(F,W0) for each
finite simple graph F on the vertex set [k] and W0 ∈ W. So the function Bn,f satisfies
Bn,f (W0) = E(f(WG(n,W0))) for each W0 ∈ W and measurable function f : W → R. In
particular, for a fixed f ∈ C(W), we can calculate as follows using Fact 3.17. We write
rn = exp(−n/(2 log(n)) for the probability that the approximation does not hold. Then

|Bn,f (W0)− f(W0)| = |Ef(WG(n,W0))− f(W0)| ≤ rn · 2∥f∥+ (1− rn)ωf

(
22√
log(n)

)
,

where ωf is a modulus of continuity for f that satisfies |f(W ) − f(U)| ≤ ωf (δ□(W,U)).
Note by uniform continuity, such wf exists which is left continuous at 0 and so we conclude
supW0∈W |Bn,f (W0)− f(W0)| → 0 as n→∞.

Remark 3.18. As mentioned in [BC89], the analogous standard argument in the sequence
case via Chebyshev’s theorem in place of the Second Sampling Lemma Fact 3.17, leads to
a nearly optimal bound. It would be interesting to see whether the bound in the Second
Sampling Lemma is optimal in this sense.
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4 Further analogous results

In the previous sections, we explicitly connected the theories of exchangeable binary se-
quences and exchangeable graphs via a shared functional analytic framework to prove de
Finetti-style integral representation theorems and related results. In this section, we briefly
sketch some immediate applications of our framework for other closely related theories.

4.1 Exchangeable sequences in a finite state space

Consider an exchangeable sequence Y with values in the set [k] for some k ∈ N. In this
case, de Finetti’s theorem can be formulated as an integral on the parameter space given
by the simplex ∆k = {θ ∈ [0, 1]k :

∑
i θi = 1}. For a vector m ∈ [k]n and i ∈ [k],

let us write λm(i) for the number of coordinates of m that takes the value i and then
λm = (λm(0), . . . λm(k − 1))/n, which is an element of ∆k.

Fact 4.1 (de Finetti). A random infinite sequence with values in [k] is exchangeable, if
and only if

pm = P((Y1, . . . Yn) = m) =

∫
∆k

k∏
i

θ
λm(i)
i µ(dθ)

holds for a measure µ. In this case, µ is unique and the sequence of empirical average
measures (µn)n given by µn =

∑
m∈[k]n pmδλm converges weakly to µ.

Now the parameter space ∆k is compact, it is easy to check that multivariate polynomi-
als cm : ∆k → R, cm(θ) =

∏k
i θ

λm(i)
i are continuous, linearly independent and span a dense

subset in ∆k. Furthermore, for each i ∈ [k] the sequence (Ain)n given by 1
n

∑n
j=1 I(Yj = i)

forms a reverse martingale. These together allow us to apply our proof technique to prove
Fact 4.1 and the corresponding signed measure representation for finite exchangeable
sequences.

A similar proof of the integral representation is available if the state space S has a
finitely generated σ-algebra, which is true if e.g. S is compact and assumes the Borel
σ-algebra. This is also incorporated in the general setting of the next section.

4.2 Partially exchangeable binary sequences

Partial exchangeability is often referred to [Leo18], [Dia23] the joint law of random binary
sequences (Y 1

n ), . . . (Y
k
n ) that are invariant under separate permutations of their indices.

That is, for permutations π1, . . . πk and π2 and finite integers N1, . . . Nk

{{Y i
πi(n)
}Ni
n=1}

k
i=1

d
= {{Y i

n}
Ni
n=1}

k
i=1. (40)

This is a stronger assumption than the vectors (Y 1
i , , . . . , Yi+) being exchangeable, but

weaker than that the zipped sequence of the Yi-s is exchangeable (e.g. Y0 and Y1 are
not necessarily identically distributed). For such, there is a de Finetti-style representation
theorem as follows.

Fact 4.2. A the joint law of k infinite random binary sequences Y1, . . .Yk and is partially
exchangeable if any only if there is a measure µ on [0, 1]k such that

P({{Y i
n = yij}

Ni
j=1}

k
i=1) =

∫
[0,1]k

k∏
i=1

Ni∏
j

θ
yji
i (1− θi)(1−y

j
i )µ(d(θ1, . . . dθk)). (41)

In this case, µ is unique and the empirical averages 1
n(
∑n

j=1 Y
1
j , · · ·

∑n
j=1 Y

k
j ) converge to

µ in distribution.
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The corresponding signed measure representation for finite partially exchangeable se-
quences X1, . . . , Xk is also available and was first proven in [Leo18]. The argument using
our proof recipe can be directly applied with the parameter space [0, 1]k and polynomials
k∏
i=1

Ni∏
j
θ
yji
i (1− θi)(1−y

j
i ).

4.3 Bipartite graphs

By a bipartite graph G we mean a graph with two disjoint vertex sets V 1
G and V 2

G with
edges connecting nodes in separate vertex sets. In [DJ08] the authors sketch an analogous
exchangeability and limit theory of bipartite graphs to the simple graphs case. A graphon
in this case need not be symmetric, it is a measurable function W : [0, 1]× [0, 1] → [0, 1].
The functions t(F, ·), tinj(F, ·), tind(F, ·) for a bipartite F can be defined in a similar manner
and have analogous properties [DJ08]. We can again define the cut norm

∥W∥□ = sup
S,T⊂[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y)dx dy

∣∣∣∣∣∣ , (42)

and in this case, the cut distance is obtained by

δ□(U,W ) = inf
ϕ∈Ψ
∥U −W ϕ,ψ∥□ (43)

where Ψ is the set of measure preserving maps [0, 1]→ [0, 1] andW ϕ,ψ(x, y) =W (ϕ(x), ψ(y)).
If we quotient out by the relation δ□(W,U) = 0, we again obtain a compact space Was, by
close analogy to the proof in [LS07]. Checking all the required properties, we can obtain
the analogous integral representation results to Fact 3.7 and Theorem 3.8.

5 More general invariant structures

As we have seen, for an infinite exchangeable sequence X the statistic ( 1n(
∑

iXi))n∈N
forms a backwards martingale and the limit specifies the law of the de Finetti mixing
measure µ in distribution. Similarly, for an infinite exchangeable graph H, the sequence
(tinj(F,H|n))n>|V (F )| forms a backwards martingale for each finite simple graph F and the
collection of the limits of these martingales specifies the law of the mixing measure on
graphons. These backwards martingales are specific examples of the more general con-
struction given in Lemma 5.3 which enables us to derive an analogous exchangeability
and limit theory for more general group actions. The starting point is the abstract er-
godic decomposition of invariant probability measures discussed in various flavours in e.g.
[Far62], [Var63][Mai77], and [Dyn78], see also [Kal05].

By measurable action of a group G on a Polish space Ω we mean measurable functions
ϕ : Ω→ Ω for each ϕ ∈ G, which respect the product structure of G under composition. A
measurable function f : Ω → R is G-invariant if f ◦ ϕ = f for each ϕ ∈ G. A measurable
set A ⊂ Ω is invariant, if IA is an invariant function. The set of G-invariant sets form a
σ-algebra, which we call ΣG. A measure µ on Ω is invariant if it equals its pushforward ϕ#µ
for any ϕ ∈ G, that is

∫
fdµ =

∫
f ◦ϕdµ for any integrable function f and ϕ ∈ G. We write

PG for the set of G-invariant probability measures. An invariant probability measure µ is
ergodic, if it is trivial on ΣG, that is µ(A) ∈ {0, 1} for each A ∈ ΣG. Ergodic decomposition
holds under the technical assumption that G is amenable. All the groups that we discuss
here are amenable, we refer to [AO22] for the definition in a similar treatment to ours.
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Fact 5.1 (Varadarajan). Let G be an amenable group that acts measurably on a Polish
space Ω. Then:

• The ergodic probability measures are precisely the extreme points of PG. The set
ex(PG) of ergodic measures is measurable in P.

• A probability measure P on Ω is G-invariant if and only if

P (A) =

∫
exPG

η(A)µP (dη) for each measurable A ⊂ Ω

for a probability measure µP on exPG, which is then uniquely determined by P.

Note that all the exchangeable structures that we discussed are invariant distributions
under some action of the symmetric group S on the space of infinite sequences, graphs, etc
by some index permutations. These are all compact, metrizable spaces in their respective
product topologies. E.g. for infinite graphs, if we writeN for the set of possible edges on the
vertex set N, then the action of the symmetric group has the base space Zgraph = {0, 1}N ,
which is a compact metric space in the product topology, and the action is by permuting
vertices. In the case of exchangeable binary sequences, we have the standard action of the
symmetric group on Zseq = {0, 1}N. The corresponding de Finetti theorems thus fit in
the framework of this ergodic decomposition theorem, but the additional structure gives
further three important properties.

1. The characterisation of ergodic measures by some independence criterion usually
referred to as dissociatedness. For the sequence case this is the fact that the ergodic
distributions are precisely the i.i.d. ones, often called the Hewitt-Savage theorem.

2. The de Finetti integrals can be stated over a parameter space where the law of large
numbers gives rise to the limit theory of infinite sequences, graphs, etc, in the sense
that their finite components (initial segments, restrictions) converge almost surely to
a random element of the parameter space: [0, 1] for sequences and W for graphs.

3. The set of ergodic measures are weakly compact, which is of independent interest
and also renders the parameter space compact via a homeomprhism.

We extract structural, algebraic assumptions on the action of S on graphs and sequences
(and the other combinatorial structures that we leave implicit here) that allow for these
properties. We then state these properties as abstract assumptions on the action of a
group G on a space Z. We assume that Z is a compact metric space, which is the case
for Zseq = {0, 1}N and Zgraph = {0, 1}N . We draw analogies from the treatment of graph
limits and exchangeable graphs in [DJ08]. In particular, our parameter space is inspired
by the product space U∗ ⊂ [0, 1]U discussed there, which is homeomorhpic to the graphon
space ([Lov12] Remark 11.4). We assume that the group G is a direct limit of compact
groups.

Definition 5.2. The group G is called the direct limit of the groups Gn, if each Gn is
compact, Gn ⊂ Gn+1 for each n and G = ∪nGn.

We call G a direct limit in short, if it is a direct limit of compact groups. Note the
symmetric group S is the direct limit of the finite symmetric gropus Sn. For direct limits,
the following pointwise ergodic theorem is available.
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Lemma 5.3. Let a direct limit G of compact groups Gn act measurably on a standard
Borel space (Z,Σ). Let Z be a G-invariant random element of Z and let f ∈ L1(Z). Then,
(EZ(f(Z|ΣGn))n∈N is a backwards martingale and

EZ(f(Z)|ΣGn)→ EZ(f(Z)|ΣG) (44)

almost surely. Moreover,

EZ(f(Z)|ΣGn) =
1

|Gn|

∫
Gn

f(ϕZ)|dϕ| (45)

almost surely.

Proof. Abbreviate fn(x) := |Gn|−1
∫
Gn
f(ϕx)|dϕ|. The direct limit structure implies that

∩nΣGn = ΣG, so we have to show fn → EZ [f(Z)| ∩n ΣGn ] a.s.

Let P be the law of Z. Observe fn is Gn-invariant, since Gn is a group and hence∫
Gn

f(ϕψx)|dϕ| =
∫
Gnψ

f(ϕx)|dϕ| =
∫
Gn

f(ϕx)|dϕ| for ψ ∈ Gn .

It follows that fn ∈ ΣGn , which implies fn = P (fn|ΣGn) almost surely. Consider any
A ∈ ΣGn and ϕ ∈ Gn. Since P is ϕ-invariant,

IA ◦ ϕ = IA P -a.s. and hence P (IAf ◦ ϕ) = P (IA ◦ ϕ−1f) = P (IAf) .

It follows that P (fn|ΣGn) = P (f |ΣGn) almost surely, since

P (IAfn) =
1

|Gn|

∫
Gn

P (IAf ◦ ϕ)|dϕ| =
1

|Gn|

∫
Gn

P (IAf)|dϕ| = P (IAf)

for all A ∈ ΣGn . In summary, we have shown fn = P (fn|ΣGn) = P (f |ΣGn) almost surely.

Note Gn ⊂ Gn+1 implies ΣGn ⊃ ΣGn+1 , so by the law of total probability,

P (P (f |ΣGn)|ΣGn+1) = P (f |ΣGn+1) almost surely.

That shows (P (f |ΣGn),ΣGn)n∈N is a reverse martingale, so

fn = P (f |ΣGn)
n→∞−−−→ P (f | ∩n ΣGn) = P (f |ΣG) almost surely

by the reverse martingale convergence theorem.

For a finite, labelled graph F , consider the bounded, indeed continuous function fF on
Zgraph = {0, 1}N given by fF (H) = I(F ⊂ H). Here, F is formally considered to have
vertex set N with only finitely many edges and inclusion is understood on the edge set.
Then, by rewriting the definition of tinj(F, ·) it follows that for an infinite graph H, finite
graph F and n ≥ |V (F )|,

1

|ΣSn |
∑
σ∈Sn

fF (σH) = tinj(F,H|n). (46)

Thus, by (45), the backwards martingale structure of the injective homomorphism
densities is a special case of Lemma 5.3, when choosing the function f as fF .

For the sequence case, similar backwards martingales can be identified by looking at
the functions fx(X) = I(x = (X1, . . . Xn)) for each finite assignment x = (x1, . . . , xn)
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as the initial segment of an infinite sequence. The empirical average corresponds to the
backwards martingale obtained from the assignment x = (1) and has the random limit θ
in [0, 1]. If |x| = n and

∑
i xi = k, then the limit is cnk(θ) = θk(1− θ)n−k.

Note that Lemma 5.3 provides a similar backwards martingale for each function
f that is integrable under each invariant law on Zgraph or Zseq. Our aim is to un-
derstand what are the properties of the set of functions Fgraph = {fF : F ∈ L} and
Fseq = {fx : x ∈ ∪n{0, 1}n} that make them suitable for the development of the parallel
limit and exchangeability theories that satisfy the properties 1-3. above. Specifically, we
aim to construct a parameter space C and a set of real valued functions F on Z and for
each f ∈ F a function πf : C → R, such that a distribution P on Z is G−invariant, if and
only if there is a necessarily unique measure µP on C, such that

P(f) =
∫
C
πf (c)µP(dc) for each f ∈ F , (47)

and exhibit a statistic Zn of a random element Z ∼ P such that Zn → Z ∈ C almost
surely with Z ∼ µP. Then Zn will correspond to ’random invariant finite objects’ like the
restrictions H|n of infinite exchangeable graphs to the vertex set [n], and Z to their limit.

Firstly, all elements of Fgraph (the analogy with Fseq will be left implicit in the rest)
are continuous and in particular in L1(Zgraph, µ) for any measure µ on Zgraph, as Zgraph is
compact. Also, it can be checked by the Stone-Weierstrass theorem that the linear span
of Fgraph is dense in C(Zgraph). Consequently, the values (P(f), f ∈ Fgraph) determine
probability measures on Zgraph. In the general case, since Z is assumed metrizable, C(Z) is
separable, so we can always extract such a countable dense set. This is the first property
of F we require.

Definition 5.4 (Fullness). A countable set F of continuous functions Z→ R is full if its
linear span is dense in C(Z).

We now identify the parameter space. Let F : Z → RF be the Cartesian product of
the functions f ∈ F . For an ergodic random element Z, note that EZ(f(Z)|ΣG) is almost
surely constant for each f ∈ F and takes value EZ(f(Z)). Because F is countable, this
holds jointly for each f ∈ F , almost surely. Consider the set

C0 = {EQ(F (Z)) : Q is an ergodic measure on Z} ⊂ conv(F (Z)). (48)

We then have the following.

Lemma 5.5. For an G-invariant measure P on Z, we have that P(F (Z)|ΣG) ∈ C0, almost
surely under P.

Proof. Let us write F (Zn) = 1
|Gn|

∫
Gn
F (ϕZ)|dϕ| for Z ∈ Z. By Lemma 5.3 we have that

F (Zn) = EP(F (Z)|ΣGn) and converges to EP(F (Z)|ΣG) P-almost surely. By the abstract
ergodic decomposition theorem Fact 5.1,

EP(F (Zn) ∈ C0) =
∫
ext(PG)

Q(F (Zn) ∈ C0)α(dQ) (49)

for a mixing measure α concentrated on the ergodic measures ex(PG). Also note that
for ergodic Q, the sequence F (Zn) → EQ(F (Z)) almost surely, and so it follows that
Q(Zn ∈ C) ↗ 1 for each such Q. Then it follows by the monotone convergence theorem
that the left hand side of (49) tends to 1.
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This motivates the choice of C0 as our parameter space. Then µP is taken as the law
of EP(F (Z)|ΣG) and πf : C → R as the projection on the coordinate given by f. A further
property that we require is that any distribution P on Z that satisfies (47) is G−invariant.
We note the following.

Lemma 5.6. Let F be full. Suppose for f ∈ F we also have f ◦ ϕ ∈ F for each ϕ ∈ G.
Then any distribution P satisfying (47) for each f ∈ F is G−invariant.

Proof. Fix ϕ ∈ G. Note that for each ergodic distribution Q, we have EQ(f) = EQ(f ◦ ϕ).
In particular, the coordinate projections πf and πg on the components f and g = f ◦ ϕ
coincide. It thus follows that if P satisfies (47), then P(f) = P(f ◦ϕ) for each f ∈ F . Since
span(F) is dense in C(Z), this holds for each f ∈ C(Z) and so P = P ◦ ϕ.

Note that for graphs, we have that I(F ⊂ σH) = I(σ−1F ⊂ H) and so in particular,
Fgraph has this closure property that we state as an assumption.

Definition 5.7 (Closure). The set F is closed under the action of G, if for f ∈ F and
ϕ ∈ G, we also have f ◦ ϕ ∈ F .

For graphs, the argument for the uniqueness of the mixing measure µP via the Stone-
Weierstrass theorem relies on the compactness of the parameter space and the factorisation
property t(F,W ) · t(G,W ) = t(FG,W ) of homomorphism densities. It turns out that
both of these properties are a consequence of the dissociatedness of ergodic measures that
we define in the general setting in two steps. The first are two structural assumptions
motivated by the graph case.

Definition 5.8 (Shift property). The set F has the shift property, if for each n ∈ N and
f ∈ F there is some ϕ ∈ G such that fn = f ◦ ϕ is Gn-invariant.

Definition 5.9 (Adaptedness). The set F with the shift property is adapted to the action
of G if for each g ∈ F , there is an N such that for any f ∈ F and m,n ≥ N , we have that
g · fn ∈ F and g · fn = (g · fm) ◦ ϕ for some ϕ ∈ G. We call N the adaptation degree of g.

For a finite graph F , its shifted version Fn is the one whose vertex set is shifted by n.
Then for graphs, Fgraph satisfies the shift property with the choice I(F ⊂ ·)n = I(Fn ⊂ ·).
Indeed any permutation σ on N suffices that shifts the support of F and maps 0-s to the
first n coordinates. Given another finite graph G, for large enough n, G and Fn are disjoint.
So G∪Fn can be permuted into G∪Fm for m > n by a permutation that leaves the vertex
set of G intact and shifts the vertex set of Fn. This is the content of the adaptedness
property. The adaptation degree of I(G ⊂ ·) is then |V (G)|.

Definition 5.10 (Dissociatedness). A distribution P on Z is dissociated with respect to
an adapted set F , if for each g ∈ F with adaptation degree N and another f ∈ F and
n ≥ N , we have that

P(gfn) = P(g)P(fn). (50)

For graphs, this corresponds to the property P(F ∪G ⊂ H) = P(F ⊂ H) ·P(G ⊂ H) for
disjoint finite graphs F and G, which in this case characterises ergodic distributions. It is
apparent that if all ergodic distributions on Z are dissociated with respect to F , then the
projections {πf : f ∈ F} have the factorisation property πf · πg = πgfn . The link between
dissociatedness and compactness is summarised as follows.

Lemma 5.11. Suppose the set F of functions on the (compact metric) space Z is adapted
to the action of G. Then the set Pdiss of dissociated distributions on Z is compact in the
weak topology.
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Proof. It is well-known that the set P of all probability measures on a compact metric
space Z is compact and metrizable, see e.g. [Kle20]. So we need to show that Pdiss is
weakly closed in P. Because P is metrizable, it is sufficient to check sequential closure.

So take a sequence Pm ∈ Pdiss and suppose Pm ⇀ P. Take g ∈ F with adaptatioin
degree N and n ≥ N. Then for f ∈ F , we have that Pm(gfn) → P(gfn) as m → ∞. On
the other hand, Pm(gfn) = Pm(g)Pm(fn)→ P(g)P(fn). It follows that P is dissociated and
so Pdiss is weakly sequentially closed as required.

This leads to the following.

Lemma 5.12. Suppose that the set ex(PG) of ergodic measures coincides with Pdiss ∩
PG. Then ex(PG) and C0 are compact and homeomorphic. Furthermore, the integral
representation (47) uniquely specifies the mixing measure µP.

Proof. We have that ex(PG) is weakly compact by Lemma 5.11. A similar argument
shows that PG is compact as well and thus so is their intersection. The map τ : ex(PG)→ C0
with τ(Q) = EQ(F ) is a continuous bijection from a compact space, so is a homeomorphism,
and in particular C0 is compact. Moreover, by the factorisation property, span({πf : f ∈
F}) is an algebra that separates points and contains constant functions and so is dense.
In particular, the equations in (47) uniquely specify µP.

It is then now clear that our final aim is to structurally characterise when ex(PG) =
PG ∩ Pdiss. One direction does not require further assumptions.

Lemma 5.13. If the set F is adapted to the action of G, then all ergodic measures are
dissociated.

Proof. We follow along the proof of Theorem 5.5 in [DJ08]. Take an ergodic distribution
Q on Z. Take g ∈ F with adaptation degree N . For any f ∈ F and n ≥ N , we have that

E(gfn) = E(E(g|ΣGn) · fn),

since fn is ΣGn-measurable. Note E(g|ΣGn) → E(g), almost surely, by Lemma 5.3 since
Q is ergodic. Hence, by the dominated convergence theorem,

E((E(g|ΣGn)− E(g)fn)→ 0

as n→∞. It thus follows that E(gfn)− E(g)E(fn)→ 0. But by adaptedness, both E(fn)
E(gfn) are unchanged for n ≥ N and so the result follows.

For the converse, we make our last structural assumption on F .

Definition 5.14 (Shift-completeness). The set F is said to be shift-complete, if

σ({fn : f ∈ F}) = ΣGn .

For graphs, shift-completeness follows from the fact that finite graphs shifted by n
generate infinite graphs on vertex set [n,∞), which generate Sn-invariant sets.

Lemma 5.15. Suppose that F is full, adapted to the action of G and is shift complete.
Then any G-invariant dissociated distribution is ergodic.
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Proof. Take a dissociated distribution R on Z. For N ∈ N, let FN ⊂ F contain elements
with dissociation degree N. Since R is dissociated, it follows that σ(FN ) is independent of
σ({fn : f ∈ F}), for any n > N , which is ΣGn by shift completeness. It thus follows, that
ΣG is independent of σ(FN ) for each N . But ∪nFn = F and σ(F) = B(Z), as F is full.
Hence ΣG ⊂ B(Z) is independent of itself and so is trivial. If further R is G-invariant, it
follows that it is ergodic.

We are now ready to put everything together into a final statement.

Theorem 5.16. Let G be the direct limit of the compact groups Gn that act measurably
on the compact metric space Z. Suppose that there is a countable set F of continuous
functions on Z that is full, closed under and adapted to the action of G and is shift-
complete.

Then a G-invariant measure is ergodic, if and only if it is dissociated with respect to F .
The set ex(PG) of ergodic measures is compact and has an embedding τ : ex(PG) ↪→ RF

with image C. A distribution P on Z is G-invariant if and only if there is a measure µP on
C such that

P(f) =
∫
C
πf (c)µP(dc) for each f ∈ F , (51)

for some continuous functions πf on C. The measure µP is then unique. Moreover, f(Zn) =
1

|Gn|
∫
Gn
f(ϕZ)|dϕ| → πf (C) P-almost surely, where C ∈ C is a random element with

distribution µP.

Proof. Take a probability measure P on Z. Since F is full, the integral equations (51)
uniquely specify P. As above, let F : Z → RF be the Cartesian product of the functions
f ∈ F and let C = {EQ(F ) : Q ∈ ex(PG)}. First, if (51) holds, then by the closedness of F
under G, Lemma 5.6 implies that P is G-invariant.

Suppose now that P is G-invariant. By Lemma 5.5, we have that EP(F |ΣGn) =
F (Zn)→ EP(F |ΣG) ∈ C almost surely. Let µP be the law of EP(F |ΣG). Take the coordinate
projection function cf : C → R that projects c ∈ C to its compomponent indexed by f. Then

µP(cf ) = E (EP(f |ΣG)) = P(f)

by the law of total probability, so µP satisfies (51) with the choice of πf as the coordinate
projections cf . Now the adaptedness and shift-completeness of F imply by Lemma 5.13
and Lemma 5.15 that ex(PG) coincides with the set PG∩Pdiss of F-dissociated measures.
Then, by Lemma 5.12, ex(PG) is compact and homeomorphic to C and the equations (51)
uniquely specify µP.

5.1 Invariance under Gn

In this subsection, we discuss an analog of finite exchangeability in the framework pre-
sented.

6 Information projections and exchangeable binary sequences

In this section, we introduce the connection between exchangeability and the theory of max-
imum entropy distributions developed in, among others, [Csi75], [Csi84][CM03], [CM01]
[CM08]. In this literature, the authors study probability measures Q satisfying

Q = argminP∈C kl(P∥µ), (52)
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where C is a convex subset of probability measures on a measurable space (S,S) and µ ̸∈ C
is another probability measure. Such Q is called the information projection of µ on C. Of
particular interest is the case when C is taken as a linear set La,f , where

La,f = {P :

∫
S
fi(s)P (ds) = ai} (53)

for vectors of measurable functions f = (f1, . . . fn) and scalars a = (a1, . . . an). In [Csi75]
and [CM03] the authors propose precise conditions for the existence of an the information
projectionQ and study its density with respect to µ. They show that at least approximately,
Q is in the exponential family

Eµ,f =
{
Qθ :

dQθ
dµ

(x) = e⟨θ,f(x)⟩−Λf (θ), θ ∈ dom(Λf )
}
, (54)

where Λf (θ) =
∫
X e

⟨θ,f(x)⟩dµ and dom(Λf ) = {θ : Λf (θ) <∞}.
Note that for a an infinite exchangeable random sequence Y, for each n, the mixing

measure µ in de Finetti’s theorem can be viewed as an element µ ∈ La,f , where ak = pnk
is the law vector of (Y1, . . . Yn) and fk(s) = cnk(s) and S = [0, 1]. Further, note that any
ν ′ ∈ La,f is the mixing measure of an infinite exchangeable sequence Z with (Z1, . . . Zn)

d
=

(Y1, . . . Yn).
This connection enables us to study the following questions. Given a finitely exchange-

able random sequence X ∈ {0, 1}n, how large is the set Rn,+X of possible positive mixing
measures for X? Also, given a Borel measure µ, which µ0 ∈ Rn,+X is the closest to µ in the
kl-sense? Note that by de Finetti’s theorem, we need that X is infinitely extendible forRn,+X

to be nonempty. Recall from Section 1.1 that this is equivalent to pX ∈ conv(c([0, 1]),
where cn(θ) = (cn1 (θ), . . . , c

n
n(θ)) is the i.i.d. curve.

Theorem 6.1. Let X be a finite exchangeable sequence and µ a measure on [0, 1] with
infinite support sµ Then int(conv(c(sµ))) is not empty and there is some µ1 ∈ Eµ,c that is
also in the set of possible mixing measures Rn,+X , if and only if

pX ∈ int(conv(c(sµ))). (55)

Recall the discussion in Section 1.1 with the geometric interpretation of this result
and the possible interpretation of this theorem that the set Rn,+X is as large as possible.

The proof of Theorem 6.1 is delayed until the end of this section. The boundary
case pX ∈ ∂(conv(c(supp(µ)))) is more delicate and requires a notion of extension of the
exponential family discussed below. This is the subject of Theorem 6.12.

We now develop the background on information projections to the extent neccessary
for the proofs of Theorem 6.1 and 6.12. For further details, we refer to [CM03], [Csi75]
and [CM01]. We start with the naive existence result of [Csi75]. Recall the total variation
norm of (signed) defined in (7). We use the shorthand kl(C∥µ) = infη∈C kl(η∥µ).

Fact 6.2 (Csiszár). Let C be a convex set of probability measures that is total variation
closed and let µ ̸∈ C be another probability measure. Suppose

kl(C∥µ) <∞. (56)

Then C admits a unique information projection Q under µ.
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Recall that in the case S = [0, 1] the Riesz Representation Theorem implies that the
total variation norm is the dual space norm of linear functionals on C([0, 1]). Since the
functions cni are continuous, it follows that the linear sets La,f as in (53) with fi = cin are
weak-* closed. So they are certainly norm (and thus total-variation) closed. Thus Fact
6.2 implies that a measure µ on [0, 1] has a unique information projection on LpX,c, if
LpX,c and µ satisfy (56). In [CM01] and [CM03] the authors came up with a device, the
convex core cc(µ) of a measure to characterise when this is the case in terms of the vector
of values a = pX and the function f = c. The definitions are stated for S = Rd, but as we
will see, we can transfer them to more general spaces.

Definition 6.3 (Csiszár, Matus). For a finite Borel measure ν on Rd, its convex support
is the intersection of all closed and full-measure sets, denoted cs(ν). The intersection of all
full-measure, convex sets is called the convex core, written as cc(ν).

In [CM01], convex cores of measures are characterised as those convex sets that have
at most countably many faces. Thus they are in particular Borel. The convex core and
the well-understood convex support only differ on their boundaries.

Fact 6.4 (Csiszár, Matus). We have cl(cc(µ)) = cs(µ), where cl stands for the topological
closure. Also, their relative interiors coincide, i.e ri(cc(µ)) = ri(cs(µ)).

The crucial characterisation for the convex core is the following result in [CM01]. It
says that the convex core contains the right amount of boundary to contain means of
absolutely continuous measures.

Fact 6.5 (Csiszár, Matus). We have

cc(ν) =

{∫
Rd

x dP : P ≪ ν, P a probability measure with a mean
}
. (57)

Moreover, for each a ∈ cc(ν), there exists such P with dP
dν bounded.

Let us write La = La,f with f taken as the identity on Rd. In [CM03] they then point
out the following corollary. We recite the proof because of the significance of this result
for our discussion.

Fact 6.6 (Csiszár, Matus). . For the linear set La and a finite measure µ, we have

kl(La∥µ) <∞,

if and only if a ∈ cc(µ).

Proof. Suppose a ∈ cc(µ) ⊂ Rd. Then byFact 6.5 there is P ∈ La that has a bounded
Radon-Nikodym derivative f . Since µ is finite, then

kl(P∥µ) =
∫
Rd

f log(f)dµ <∞.

Conversely, if a ̸∈ cc(µ), then again by Fact 6.5, there is no P ∈ La with P << µ and so
by definition, for all P ∈ La we have kl(P∥µ) =∞.

Our aim is now to transfer Fact 6.6 to the more general linear sets La,f . This can be
done by pushforward and pullback constructions as shown in [Csi84]. We follow [CM03] in
our outline and notation. Let g : S → Rn be measurable. For a probability measure µ on
S, we write µg for its image measure on Rn. For a measure ν̃ << µg on Rn, we write ν̃g−1, µ

for the measure on S with µ-density dν̃
dµg

(g(x)), where For a convex set C of probability
measures on Rn, let

Cg−1 = {P ∈ P(S) : Pg ∈ C}. (58)
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Fact 6.7 (Csiszár). For µ and C and g as above, we have

kl(Cg−1∥µ) = kl(C, ∥µg). (59)

Moreover, µg has information projection η̃ on C if and only if η̃g−1,µ is the information
projection of µ on Cg−1 .

Now notice that the linear set La,f we have that La,f = (La)f−1 . We can thus conclude
the following.

Fact 6.8 (Csiszár, Matus). For the linear set La,f on the measurable space (S,S) and
finite measure µ on S, we have kl(La,f |µ) <∞ if and only of a ∈ cc(µf ).

Using the connection with exchangeability and Fact 6.2, we conclude the following
lemma.

Lemma 6.9. Given a finitely exchangeable binary sequence X = (X1, . . . Xn) with law-
vector pX and a measure µ on [0, 1]. Let c(p) → (pn, pn−1p, . . . (1 − p)n) be as before.
Then µ has an information projection on the set Rn,+X of possible positive mixing measures
for X, if and only if

pX ∈ cc(µc). (60)

Then the information projection Q is unique.

Proof. Because [0, 1] is compact and Hausdorff, we have seen that the unique information
projection on the convex set Rn,+X = LpX,c, exists, if and only if kl(Rn,+X ∥µ) < ∞. Thus,
by Fact 6.8, we conclude.

If exists, then Q << µ for the information projection Q of µ on La,f . Our aim now is
to characterise its µ-density. Fact 6.11 will give us that it comes from an extension of the
exponential family Eµ,f to measures supported on the faces of cc(µf ) defined in [CM03].

Let µ be a measure on S and f : S → Rn be measurable. Let F ⊂ cc(µf ) be a face
of the convex set cc(µf ) ⊂ Rn. Let µF be the restriction of µ to the set f−1(cl(F )). The
following Lemma from [CM01] is a key technical tool.

Fact 6.10 (Csiszár, Matus). Let F be a face of cc(µf ). The measure µF has convex core
F . In particular, it is a nontrivial measure.

Thus exponential families with base measure µF are well-defined. A member of EµF ,f
has a µ-density e⟨θ,f(s)⟩−ΛF

f (θ) for s ∈ f−1(F ) and 0 otherwise. Here ΛFf (θ) =
∫
S e

⟨θ,f(s)⟩µ(ds).
Then

ext(Eµ,f ) =
⋃

F is a face of cc(µf )

EµF ,f (61)

is called the extended exponential family with base measure µ and sufficient statistic f .
Observe that Fact 6.10 implies that the extreme points of cc(µf ) are atoms of µf . In

particular, if µf is non-atomic, there are no non-trivial faces F and we have ext(Eµ,f ) = Eµ,f .
In general, the extension is a way of forming a closure of the exponential families by
including densities supported on convex hulls of atoms. See [CM05] for details.

Fact 6.11 (Csiszár, Matus). Let the linear set La,f and the measure µ be such that µ has
an information projection Q on La,f . Then Q ∈ ext(Eµ,f ). Furthermore, Q belongs to the
component based on µF , where F is the face with a ∈ ri(F ). Moreover, Q satisfies the
Pythagorean identity

kl(P∥µ) = kl(P∥Q) + kl(Q∥µ) for P ∈ La,f . (62)
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Note in particular that if a ∈ ri(cc(µ)), then Q is in the actual exponential family Eµ,f .
We are now ready to state and prove our general result.

Theorem 6.12. Let X be a finite exchangeable binary sequence and µ a Borel measure
on [0, 1], such that pX ∈ cc(µc). Then there is some µ1 in the extended exponential
family ext(Eµ,c) that is a possible mixing measure for X. Furthermore, µ1 belongs to
the component based on µF , where F is the face with pX ∈ ri(F ). In particular, if
pX ∈ ri(cc(µc), then µ1 ∈ Eµ,c.

Proof. By Lemma 6.9, the information projection µ1 of µ exists on the set of possible
mixing measures Rn,+X = LpX,c, if and only if pX ∈ cc(µc). We can conclude by Fact 6.11.
Note that this result also provides the Pythagorean identity (62).

To obtain the more tangible results like Theorem 6.1 stated above, our aim now is
to evaluate the convex core cc(µc). This is the content of the following results. They are
adapted from [CM03], where the function θ → (θ, θ2, . . . , θn) is used as an example, instead
of our c(θ) = (θn, (1− θ)θn−1, . . . , (1− θ)n).

Corollary 6.13. Suppose that µ has finite support sµ. Then cc(µc) = cs(µc) and is a
polytope. The extended exponential family ext(E) coincides with the closure of Eµ,c, when
viewed as a subset of RT .

Corollary 6.14. Suppose that µ has infinite support sµ. Let Y ⊂ sµ be the set of atoms
of µ.

i) The convex set cc(µc) has a non-empty interior which equals to that of conv(c(sµ)).

ii) Each proper face F of cc(µF ) equals a simplex conv(K) with K ⊂ c(Y ) of size at
most n. In addition µcF = µcK .

iii) Each set K ⊂ c(Y ) of size ≤ n
2 spans a face of cc(µc).

Proof. We only prove part i), which we directly need for the proof of Theorem 6.1, for
the rest we refer to [CM03]. First of all, we observe that

cc(µc) ⊂ conv(c(sµ)) = conv(c(sµ)) = cs(µc).

Indeed, c(sµ) is a compact set of full measure and its convex hull is again a compact
subset of R, which is also full and convex. Thus cc(µc) ⊂ cs(µc) ⊂ conv(c(sµ)). But
clearly conv(c(sµ) is a subset of any closed convex set of full measure, so it follows that
conv(c(sµ)) ⊂ cs(µc). By Fact 6.4, the sets cc(µc) and conv(c(sµ)) share the same relative
interior. We can thus conclude if we can show that the latter has nonempty interior. We
closely follow the a argument in [CM03].

The i.i.d curve c intersects any hyperplane H = {θ̃ : ⟨d, θ̃⟩ = r} ⊂ Rn+1 in at most n
points, because c(θ) ∈ H implies that θ is a real root of the polynomial

∑
i diθ

i(1−θ)n−i−r
of degree at most n. This implies that any 1 ≤ k ≤ n + 1 points on the i.i.d. curve c(θ)
are affinely independent, i.e. span a simplex of dimension k− 1. In particular, conv(c(sµ))
has nonempty interior, because sµ is infinite.

We can finally conclude Theorem 6.1 as a consequence of the first part of Corollary
6.14 and Theorem 6.12.

Proof of Theorem 6.1. By Corollary 6.14 i), the interior of cc(µc) is not empty and
equals conv(c(sµ)). If X and µ are such that pX ∈ int(cc(µc)), then the information pro-
jection µ1 of µ on the set LpX,c of possible mixing measures for X is in the (non-extended)
exponential family Eµ,c by Theorem 6.12. This µ1 then satisfies the requirements.
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7 Information projection and exchangeable graphs

In this section, we adapt the arguments in Section 6 to obtain analogous information
projection results for exchangeable graphs. In this case the density of the mixing measure
will come from an exonential random graph distribution. Since the the applications of the
information projection results are completely analogous, we only state the main results
and refer to Section 6 for more details.

We start by connecting an exchangeable graphs to the geometric view presented in
Section 1.1. Recall the graphon distributions, which are the infinite exchangeable graph
distributions that correspond to a deterministic graphon, i.e. which satisfy

P (H|[n] = G) = tind(G,W )

for a fixed W ∈ W. By the de Finetti theorem for graphs Fact 3.7, these are the ergodic
exchangeable graph distributions. For graphs on n vertices, the exchangeable distributions
form a simplex, of dimension m = |Un|−1 and with extreme points as uniform distributions
on isomorphism classes of graphs in Ln, see [LRS18a]. The ergodic distributions again form
a parametric curve C in the simplex, given by

indn : W → [0, 1]m

indn(W ) = (tind(G1,W ), . . . tind(Gm,W )), Gi ∈ Un.

By Fact 3.7, the distributions in the convex hull of the curve C are exactly the exchange-
able graph distributions that are infinitely extendible. The curves indn (and coordinate
projections thereof) are of great importance in extremal graph theory and are quite deli-
cate objects, see [Lov12] Chapter 16. Let F ∈ Ln be a finitely exchangeable random graph.
We write pF for the law-vector of F indexed by graphs G ∈ Ln, i.e.

pF[G] = P (F = G).

Fact 3.7 then gives us that if pF ∈ conv(indn(W)), then there is a probability measure
µ in the linear set La,f , with a = pF and f = indn of possible mixing measures for F. We
also writhe Rn,+F for this set. Since W is compact, we can again conclude, using Fact 6.8,
a Lemma about existence of the information projection.

Lemma 7.1. Let F ∈ Ln be a finite exchangeable graph with law vector pF and a measure
µ on W.. Let indn(W ) → (tind(G1,W ), . . . , tind(Gm,W )) be the ergodic curve as before.
Then µ has an information projection on the set Rn,+F of possible positive mixing measures
for F, if and only if pF ∈ cc(µindn).

Following the same steps, we also conclude the abstract extended exponential density
result for the projection.

Theorem 7.2. Let F ∈ Ln be a finite exchangeable graph and µ a Borel measure on
W, such that pF ∈ cc(µindn). Then there is some µ1 in the extended exponential family
ext(Eµ,indn), which is a possible mixing measure for F. Furthermore, µ1 belongs to the
component based on µF , where F is the face with pF ∈ ri(F ).

The real challenge is to evaluate the convex core of µindn , which is a hard problem,
given the complexity of the curve indn(W). Partial steps can be made in this direction
along the lines of Corollary 6.14. Using an old result from graph theory in [ELS79], we
can conclude a similar result to Corollary 6.14 i). The result in [ELS79] is stated in
terms of the standard homomorphism densities of graphs, we restate it in the graph limit
language. See also [Lov12], [DGKR15] and [LRS18a].
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Fact 7.3 (Erdős, Lovász, Spencer). The set indn(W) contains an open ball B in Rm.

Proposition 7.4. If µ is a measure on W of full support, then cc(µnind) has a nonempty
interior that equals that of conv(indn(W)).

Proof. We can similarly argue as in the proof of Corollary 6.14 i) that the two interiors
coincide. Fact 7.3 then gives us that int(conv(indn(W))) is not empty.

Note that unlike in the proof of Corollary 6.14 i) we cannot resort to the argument
that polynomials have finite number of roots. We thus needed to assume a full support
to be able to use Fact 7.3. Putting these results all together, we can finally conclude a
similar result to Theorem 6.1.

Theorem 7.5. Let F be a finite exchangeable graph in Ln and µ a measure on
←−
W of full

support. Then int(conv(indn(W))) is not empty and there is some µ1 ∈ Eµ,indn that is
also in the set of possible mixing measures Rn,+F , if and only if

pF ∈ int(conv(indn(W))). (63)

The densities in the exponential family Eµ,indn are the so called exponential random
graph distributions. They are of great interest for statistical inference in network models,
see e.g. [CD13] and references therein and [LRS18b] for a connection to exchangeability.
Our result states that a mixing measure µ1 for an infinitely finite extendible exchangeable
graph F ∈ Ln can be chosen from the exponential family random graphs with any base
measure µ of full measure. That is, there is a parameter θ ∈ Rm, such that

P (F|[n] = G) =

∫
W
tind(G,W )e

∑m
j θjtind(Fi)−ψ(θ) µ(dW ). (64)

Here m = |Un| as usual, and Fi ∈ Un.
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